IMPORTANT: El repositori està en manteniment des del dia 28 de Novembre fins al 4 de Desembre, només es pot consultar, però no afegir contingut. Disculpeu les molèsties
High-Pressure X-ray Diffraction and DFT Studies on Spinel FeV2O4
Show full item record
View
(2.704Mb)
|
|
|
|
|
|
Sánchez Martín, Josu; Turnbull, Robin; Liang, Akun; Díaz Anichtchenko, Daniel; Rahman, Saqib; Saqib, Hajra; Ikram, Mujtaba; Popescu, C.; Rodríguez Hernández, Plácida; Muñoz, A; Pellicer Porres, Julio; Errandonea Ponce, Daniel
|
|
This document is a artículoDate2022
|
|
|
|
We have studied the behaviour of the cubic spinel structure of FeV2O4 under high-pressure by means of powder X-ray diffraction measurements and density-functional theory calculations. The sample was characterized at ambient conditions by energy-dispersive X-ray spectroscopy, Raman spectroscopy, and X-ray diffraction experiments. One of the main findings of this work is that spinel FeV2O4 exhibits pressure-induced chemical decomposition into V2O3 and FeO around 12 GPa. Upon pressure release, the pressure-induced chemical decomposition appears to be partially reversible. Additionally, in combination with density-functional theory calculations, we have calculated the pressure dependence of the unit-cell volumes of both the spinel and orthorhombic FeV2O4 crystal structures, whose bulk moduli are B0 = 123(9) and 154(2) GPa, respectively, finding the spinel FeV2O4 to exhibit the lowest bulk modulus amongst the spinel oxides. From experimental results, the same information is herein obtained for the cubic structure only. The Raman modes and elastic constants of spinel FeV2O4 have also obtained the ambient conditions.
|
|
Ver en el catálogo Trobes
|
|
|
This item appears in the following Collection(s)
Show full item record
Search DSpace
Browse
-
All of DSpace
-
This Collection
Statistics