Z-permutable subgroups of finite groups
NAGIOS: RODERIC FUNCIONANDO

Z-permutable subgroups of finite groups

DSpace Repository

Z-permutable subgroups of finite groups

Show full item record

View       (143.0Kb)

    
Heliel, A. A.; Ballester-Bolinches, Adolfo Perfil; Esteban Romero, Ramón Perfil; Almestady, M. O.
This document is a artículoDate2016

Este documento está disponible también en : http://hdl.handle.net/10550/68725

Let ℨ be a complete set of Sylow subgroups of a finite group G, that is, a set composed of a Sylow p-subgroup of G for each p dividing the order of G. A subgroup H of G is called ℨ-permutable if H permutes with all members of ℨ. The main goal of this paper is to study the embedding of the ℨ-permutable subgroups and the influence of ℨ-permutability on the group structure.

    Heliel, A. A. Ballester-Bolinches, Adolfo Esteban Romero, Ramón Almestady, M. O. 2016 Z-permutable subgroups of finite groups Monatshefte für Mathematik 179 4 523 534
https://doi.org/10.1007/s00605-015-0756-1

This item appears in the following Collection(s)

Show full item record

Search DSpace

Advanced Search

Browse

Statistics