Calculation of size‐intensive transition moments from the coupled cluster singles and doubles linear response function
NAGIOS: RODERIC FUNCIONANDO

Calculation of size‐intensive transition moments from the coupled cluster singles and doubles linear response function

DSpace Repository

Calculation of size‐intensive transition moments from the coupled cluster singles and doubles linear response function

Show simple item record

dc.contributor.author Koch, Henrik
dc.contributor.author Kobayashi, Rika
dc.contributor.author Sánchez de Merás, Alfredo
dc.contributor.author Jørgensen, Poul
dc.date.accessioned 2010-06-18T07:42:42Z
dc.date.available 2010-06-18T07:42:42Z
dc.date.issued 1994
dc.identifier.uri http://hdl.handle.net/10550/12978
dc.language.iso en en
dc.relation http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JCPSA6000100000006004393000001&idtype=cvips&prog=normal&doi=10.1063/1.466321 en
dc.source KOCH, Henrik ; KOBAYASHI, Rika ; SÁNCHEZ DE MERÁS, Alfredo ; JORGENSEN, Poul. Calculation of size‐intensive transition moments from the coupled cluster singles and doubles linear response function. En: Journal of Chemical Physics, 1994, vol. 100, no. 6 en
dc.subject Excitation ; Dipoles ; Lithium Hydrides ; Carbynes ; Cations ; Molecular Ions ; Carbon Molecules ; Equations Of Motion ; Correlations ; Response Functions en
dc.title Calculation of size‐intensive transition moments from the coupled cluster singles and doubles linear response function en
dc.type journal article es_ES
dc.subject.unesco UNESCO::FÍSICA::Química física en
dc.identifier.doi 10.1063/1.466321 en
dc.description.abstractenglish Coupled cluster singles and doubles linear response (CCLR) calculations have been carried out for excitation energies and dipole transition strengths for the lowest excitations in LiH, CH+, and C4 and the results compared with the results from a CI‐like approach to equation of motion coupled cluster (EOMCC). The transition strengths are similar in the two approaches for single molecule calculations on small systems. However, the CCLR approach gives size‐intensive dipole transition strengths, while the EOMCC formalism does not. Thus, EOMCC calculations can give unphysically dipole transition strengths, e.g., in EOMCC calculations on a sequence of noninteracting LiH systems we obtained a negative dipole strength for the lowest totally symmetric dipole allowed transition for 19 or more noninteracting LiH systems. The CCLR approach is shown to be a very attractive ‘‘black box’’ approach for the calculation of transition moments. en
dc.type.hasVersion VoR es_ES

View       (924.7Kb)

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search

Browse

Statistics