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The low energy behavior of a recently proposed model for the massive analytic running coupling of
QCD is studied. This running coupling has no unphysical singularities, and in the absence of masses
displays infrared enhancement. The inclusion of the effects due to the mass of the lightest hadron
is accomplished by employing the dispersion relation for the Adler D function. The presence of the
nonvanishing pion mass tames the aforementioned enhancement, giving rise to a finite value for the
running coupling at the origin. In addition, the effective charge acquires a “plateau-like” behavior
in the low energy region of the timelike domain. This plateau is found to be in agreement with a
number of phenomenological models for the strong running coupling. The developed invariant charge
is applied in the processing of experimental data on the inclusive τ lepton decay. The effects due to
the pion mass play an essential role here as well, affecting the value of the QCD scale parameter Λ
extracted from these data. Finally, the massive analytic running coupling is compared with the
effective coupling arising from the study of Schwinger–Dyson equations, whose infrared finiteness
is due to a dynamically generated gluon mass. A qualitative picture of the possible impact of the
former coupling on the chiral symmetry breaking is presented.

PACS numbers: 11.55.Fv, 11.10.Hi, 12.38.Lg

I. INTRODUCTION

The theoretical analysis of strong interaction processes
at low energies represents a long-standing challenge for
Quantum Chromodynamics (QCD). Whereas the discov-
ery of asymptotic freedom [1] was followed by the rapid
development of perturbative tools for the detailed study
of the ultraviolet region, a reliable method for descrip-
tion of hadron dynamics in the infrared domain is still
missing. Given that many important QCD phenomena,
such as hadronization, quark confinement, chiral sym-
metry breaking, and dynamical mass generation, are in-
frared in origin, one resorts to the variety of models, in an
attempt to obtain a consistent quantitative description of
the low energy dynamics.

The renormalization group (RG) method [2, 3] plays
a fundamental role in the framework of Quantum Field
Theory (QFT) and its applications. In the case of QCD,
in order to describe the physics in the asymptotical ul-
traviolet region, one basically applies the RG method to-
gether with perturbative calculations. In this case, owing
to the asymptotic freedom, a priori unknown RG func-
tions can be parameterized by power series in the strong
running coupling. Eventually, this leads to approximate
solutions of the RG equations, which are used in the
quantitative analysis of the high-energy processes. How-
ever, such solutions possess unphysical singularities in
the infrared domain, contradicting the general principles
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of the local QFT, and complicating the theoretical de-
scription and interpretation of the intermediate- and low-
energy experimental data. Nonetheless, these difficulties,
being artifacts of the perturbative treatment of the RG
method, can be circumvented by judiciously incorporat-
ing nonperturbative information about the hadron dy-
namics at low energies.

It is worth mentioning several well–known examples
of such “synthesis”. The short–range part of the static
quark–antiquark potential can be calculated perturba-
tively [4], while its linear confining behavior at large dis-
tances is corroborated by both the lattice results (see
recent papers [5]) and the string hadron models (see,
e.g., book [6] and references therein). These two in-
puts complement each other and form the so-called “V–
scheme” [7] for the QCD effective charge, which has
proved to be successful in describing hadrons as bound
states of quarks [8]. The so-called “I–scheme” [9] is con-
structed along the same lines. Here, the perturbative
results are supplied with the large distance behavior of
the running coupling, coming from the lattice study [10]
of the topological structure of the QCD vacuum. In-
terestingly enough, both aforementioned schemes, al-
though being based on different assumptions, predict
a similar infrared behavior for the strong running cou-
pling. Furthermore, the latter also agrees with that of
the model for the QCD analytic invariant charge devel-
oped in Refs. [11, 12] (see also Refs. [13, 14] for the de-
tails). There is also a number of methods which proceed
from the general properties of the perturbative power
series for the QCD observables in the framework of the
renormalization group formalism. For example, these are
the “optimized perturbation theory” [15, 16], the method
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of effective charges [17], the Brodsky-Lepage-Mackenzie
convergence criterion [18], the “optimal conformal map-
ping” method [19], and the RG improvement of pertur-
bative calculations [20, 21].

Another important source of nonperturbative informa-
tion is provided by the relevant dispersion relations. The
latter, being based on the “first principles” of the the-
ory, supply one with the definite analytic properties with
respect to a given kinematic variable of a physical quan-
tity in hand. The idea of employing this information
together with perturbative treatment of the renormal-
ization group method forms the underlying concept of
the so–called “analytic approach” to QFT. It was first
proposed in the framework of Quantum Electrodynam-
ics (QED) and applied to the study of the invariant
charge of the theory [22]. Here the principle of causality
implies the Källén–Lehmann spectral representation for
the QED running coupling. Hence, the latter has to be an
analytic function in the complex q2-plane with the only
cut along the negative1 semiaxis of real q2. A number
of authors (see, e.g., Ref. [23]) have argued that a simi-
lar method can also be useful for studying non-Abelian
theories. Eventually, proceeding from these motivations,
the “dispersive approach” [24] and the “analytic ap-
proach” [25] to QCD have been developed. According to
the former one, the nonperturbative effects of the strong
interaction can be reliably captured at an inclusive level
by means of a quantity, which constitutes the effective
extension of the perturbative running coupling to the
low energy scales. The analytic approach to QCD has
been successfully applied to the study of the strong run-
ning coupling [12, 25], perturbative series for the QCD
observables [26], and some intrinsically nonperturbative
aspects of the strong interaction [11, 14, 27]. Some of the
main advantages of the latter approach are the absence
of unphysical singularities and a fairly good higher-loop
and scheme stability of the outcoming results. Besides, in
the framework of the analytic approach the continuation
of the “spacelike” theoretical predictions for the QCD
observables into the timelike domain, that is crucial for
handling the relevant experimental data, can be carried
out in a self-consistent way [28].

In general, the effects due to the masses of light
hadrons (such as π meson) can be safely neglected only
when one studies the strong interaction processes at large
momenta transferred. For example, in order to relate the
perturbative results with the high energy experimental
data on the electron–positron annihilation into hadrons,
the massless approximation of the dispersion relation for
the Adler D function may be used (see Section II for the
details). But for the hadron dynamics in the infrared do-
main the mass effects become substantial. Apparently,
this is important for the description of the low energy

1 A metric with signature (−1, 1, 1, 1) is used, so that positive q2

corresponds to a spacelike momentum transfer.

experimental data on the inclusive τ lepton decay. Both,
the results of perturbation theory and the dispersion rela-
tion for the Adler D function with the nonvanishing pion
mass, are vital here for properly processing these data.
However, no such mass effects have been taken into ac-
count within the analytic approach to QCD so far.

The primary objective of this paper is to include the
effects due to the pion mass into the analytic approach
to QCD. The incorporation of such mass effects is stud-
ied on the example of the model for the analytic run-
ning coupling developed in Refs. [11, 12]. Therein, the
imposition of the analyticity requirement has eventually
resulted in the infrared enhancement (i.e., the singular
behavior at q2 = 0) of the invariant charge in hand. In
general, one might anticipate that the presence of masses
affects the low energy behavior of the strong running cou-
pling. Indeed, as we shall see, the aforementioned singu-
larity is tamed down by the pion mass, thus giving rise
to a finite infrared limiting value for the QCD effective
charge. Apparently, it is important to apply the devel-
oped model to the description of those sets of experimen-
tal data, which display a particular sensitivity to the in-
frared behavior of the QCD running coupling. It is also
of significant interest to examine, even at a qualitative
level, the applicability of the obtained invariant charge
to the study of the chiral symmetry breaking through
Schwinger–Dyson equations.

The layout of the paper is as follows. Section II is
devoted to the description of the strong interaction pro-
cesses in spacelike and timelike domains. This material
sets up the stage for the subsequent analysis of the mass-
less and massive cases. In Section III the analytic ap-
proach to QCD is overviewed, with a particular emphasis
on the massless model for the invariant charge of [11, 12].
The effects due to the pion mass are incorporated into the
latter approach in Section IV. The basic features of the
massive strong running coupling in spacelike and time-
like regions are also studied therein. In Section V the
developed model for the invariant charge is applied to
processing the experimental data on the inclusive τ lep-
ton decay, a reasonable estimation of the QCD scale pa-
rameter Λ being obtained. In Section VI the derived
massive analytic charge is compared with the effective
charge arising from the study of the Schwinger–Dyson
equations, whose infrared finiteness is due to a dynam-
ically generated gluon mass [29]. A qualitative picture
of the possible impact of the former charge on the chiral
symmetry breaking is presented. In Conclusions (Sec-
tion VII) the basic results are summarized and further
studies within this approach are outlined.

II. STRONG RUNNING COUPLING IN

SPACELIKE AND TIMELIKE REGIONS

The consistent description of hadron dynamics in time-
like (Minkowskian) and spacelike (Euclidean) regions re-
mains the subject of intense studies. The strong inter-
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action processes involving the large spacelike momentum
transfer q2 > 0 (for instance, the deep inelastic lepton–
hadron scattering) can be examined perturbatively in the
framework of the RG method (see, e.g., Ref. [30]). How-
ever, in order to handle the processes which depend on
the timelike kinematic variable s = −q2 > 0 (for ex-
ample, hadronic width of the τ lepton decay or total
cross–section of the electron–positron annihilation into
hadrons), one first has to relate the results of perturba-
tion theory with the measured quantities. Obviously, the
question what is the expansion parameter for the QCD
timelike processes arises at this stage [31].

An indispensable method for the analysis of the
strong interaction processes in the timelike domain has
been proposed by Adler [32], and further developed in
Refs. [33, 34]. In particular, it was argued that the log-
arithmic derivative of the hadronic vacuum polarization
function Π(q2)

D(q2) =
dΠ(q2)

d ln q2
, (1)

which is also known as the Adler D function, provides
a firm ground for comparing the perturbative results
with the experimental data on the e+e− annihilation into
hadrons. Specifically, the dispersion relation [32]

D(q2) = q2
∫ ∞

4m2
π

R(s)

(s+ q2)2
ds (2)

embodies the required link between the measurable ratio
of two cross–sections [35]

R(s) =
σ (e+e− → hadrons; s)

σ (e+e− → µ+µ−; s)

=
1

2πi
lim

ε→0+

[Π(−s+ iε) − Π(−s− iε)] (3)

and the Adler D function, which can be calculated per-
turbatively. In Eq. (3) s denotes the center-of-mass en-
ergy of the annihilation process. Thus, one can continue
the perturbative results for D(q2) into the timelike do-
main by making use of the relation inverse to Eq. (2)

R(s) =
1

2πi
lim

ε→0+

∫ s−iε

s+iε

D(−ζ) dζ
ζ
, (4)

where the integration path lies in the region of analyticity
of the function D(−ζ), see also Refs. [33, 36].

So far, there is no systematic method for calculating
the Adler D function. Nevertheless, its asymptotic ul-
traviolet behavior at q2 → ∞ can be computed pertur-
batively. There, the effects due to the masses of light
hadrons can be neglected, and the Adler D function of
Eq. (1) is usually approximated by the power series in
the strong running coupling αs(q

2)

D(q2) = Nc

∑

f

Q2
f

[
1 + d(q2)

]
, (5)

where Nc = 3 is the number of colors, Qf stands for the
charge of the f -th quark,

d(q2) ≃ d1

[
αs(q

2)

π

]
+ d2

[
αs(q

2)

π

]2

+ . . . , (6)

d1 = 1, d2 ≃ 1.9857− 0.1153nf, and nf is the number of
active quarks, see Refs. [36, 37] for the details.

Thus, in order to compare the perturbative results with
the timelike experimental data, one first has to perform
on Eq. (6) the integral transformation given in Eq. (4).
It is worthwhile to underscore that this procedure dis-
torts the perturbative power series for the Adler D func-
tion drastically, since both real and imaginary parts of
the running coupling αs(q

2) contribute to Eq. (4). Ulti-
mately, the continuation presented in Eq. (4) results in
a “non-power” expansion for R(s), and even in the deep
ultraviolet asymptotic |q2| → ∞ the functions D(q2) and
R(s) are different, starting from the three-loop level, due
to the so-called π2–terms. Nonetheless, the “naive” ex-
trapolation of the strong running coupling to the timelike
domain α̂(s) = αs(|q2|) is also allowed for the perturba-
tive expansion of Eq. (6), but only if one restricts oneself
to the deep ultraviolet limit |q2| → ∞ of the one- or two-
loop levels (see Refs. [23, 26, 28, 33, 34, 38, 39] for the
details).

Since the integral transformation (4) of the perturba-
tive results has to be carried out every time one deals
with the timelike strong interaction processes, for prac-
tical purposes it is convenient to define [28] the timelike
effective charge α̂(s) in the same way, as R(s) relates
with D(q2):

α̂(s) =
1

2πi
lim

ε→0+

∫ s−iε

s+iε

α(−ζ) dζ
ζ
. (7)

In what follows the strong running coupling in the space-
like domain is denoted by α(q2), and in the timelike do-
main by α̂(s). Obviously, the inverse relation between
these effective charges2

α(q2) = q2
∫ ∞

4m2
π

α̂(s)

(s+ q2)2
ds (8)

holds as well3. It is important to emphasize that for a
detailed description of the infrared hadron dynamics the
pion mass cannot be neglected in Eqs. (2) and (8).

Apparently, for the self–consistency of the method de-
scribed above, one first has to bring the perturbative ap-
proximation for the Adler D function in Eq. (6) to con-
formity with the dispersion relation of Eq. (2). This is of

2 The case of the massless pion mπ = 0 was studied in Refs. [28,
38, 39].

3 The relations (7) and (8) are not valid for the perturbative run-
ning coupling αs(q

2) because of the unphysical singularities of
the latter, see Section III for the details.
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a great significance when one intends to study the QCD
experimental data in the intermediate- and low-energy
regions. Indeed, the integral representation in Eq. (2)
implies the definite analytic properties in q2 variable for
the Adler D function. For example, in the massless limit
(mπ = 0), it has to be an analytic function in the com-
plex q2-plane with the only cut −∞ < q2 ≤ 0 along the
negative semiaxis of real q2. However, the approxima-
tion of the right hand-side of Eq. (5) by the perturba-
tive expansion in the strong running coupling given in
Eq. (6) obviously violates this condition. Nevertheless,
this discrepancy can be eliminated in the framework of
the analytic approach to QCD, which is discussed in the
next section.

III. MASSLESS ANALYTIC RUNNING

COUPLING

As has already been mentioned in the Introduction, the
dispersion relations play a central role in the description
of hadron dynamics. Indeed, the general principles of the
local QFT (such as causality, spectrality, unitarity) are
captured by the relevant integral representations. These
are, for instance, the dispersion relation for the Adler
D function (2) and the Jost–Lehmann–Dyson represen-
tation [40] for the structure function of the deep inelastic
lepton–hadron scattering processes. In turn, the disper-
sion relations provide one with a certain nonperturba-
tive information about the quantity in hand, in particu-
lar, with the definite analytic properties in the kinematic
variable. Undoubtedly, the latter should be taken into
account when one intends to venture beyond the realm
of perturbation theory.

It has recently been argued [24, 25] that for the QCD
invariant charge α(q2) the Källén–Lehmann spectral rep-
resentation

α(q2) =

∫ ∞

0

̺(σ)

σ + q2
dσ (9)

must hold in the absence of masses. The condition (9)
is identical to that needed4 for bringing the perturba-
tive approximation of the Adler D function in Eq. (6)
to conformity with its dispersion relation (2), also en-
forcing the validity of Eqs. (7) and (8). However, there
are several ways to incorporate the analyticity require-
ment of Eq. (9) for the QCD running coupling into the
RG formalism. In other words, the perturbative asymp-
totic behavior of αs(q

2) when q2 → ∞, together with
the integral representation (9), is not enough to uniquely
determine the relevant spectral density ̺(σ). Eventu-
ally, this ambiguity has given rise to different models for
the strong running coupling within the analytic approach

4 In the limit of the massless pion mπ = 0.

to QCD (discussion of this issue can also be found in
Refs. [12, 14, 41, 42, 43]).

This section is devoted to a brief overview of one
of the massless models for the QCD analytic invariant
charge [11, 12]. This model shares all the advantages of
the analytic approach, namely, it contains no unphysical
singularities, and displays good higher loop convergence
and mild dependence on the subtraction scheme. Besides,
the running coupling of Refs. [11, 12] was successful in the
description of a wide range of QCD phenomena [14, 27].
Furthermore, it is of a particular interest to note that
this model has recently been re-derived, proceeding from
completely different motivations [13].

In the framework of perturbation theory the RG equa-
tion for the QCD invariant charge α(µ2) = g2(µ2)/(4π)
at the ℓ-loop level takes the form

d lnα
(ℓ)
s (µ2)

d lnµ2
= −

ℓ−1∑

j=0

βj

[
α

(ℓ)
s (µ2)

4π

]j+1

. (10)

Here α
(ℓ)
s (µ2) denotes the ℓ-loop perturbative running

coupling, βj stands for the β function expansion coeffi-
cient (β0 = 11 − 2nf/3, β1 = 102 − 38nf/3, ... ), and nf

is the number of active quarks. It is well-known that
the solutions to Eq. (10) have unphysical singularities in
the infrared domain at any loop level. Specifically, the
Landau pole appears at the one-loop level, whereas the
higher loop corrections introduce additional singularities
of the cut type into expression for the QCD invariant
charge. In turn, this contradicts the fundamental princi-
ples of the local QFT, violating the representation given
in Eq. (9).

In order to resolve this difficulty, in the framework of
the developed model [11, 12] the analyticity requirement
was imposed on the β function perturbative expansion5

d lnα
(ℓ)
an (µ2)

d lnµ2
= −






ℓ−1∑

j=0

βj

[
α

(ℓ)
s (µ2)

4π

]j+1




an

. (11)

In this equation α
(ℓ)
an (µ2) is the ℓ-loop analytic invariant

charge and the braces
{
. . .

}
an

denote the “analytiza-

tion” of the expression contained in them [25]:

{
A(q2)

}

an
=

1

2πi

∫ ∞

0

lim
ε→0+

[
A(−σ − iε)

−A(−σ + iε)
] dσ

σ + q2
. (12)

5 Unlike the Shirkov–Solovtsov model [25], where the analyticity
requirement (12) was imposed on the perturbative running cou-
pling αs(q

2) itself. In turn, this has led to a spectral density
somewhat different from that of Eq. (17), and, consequently, to
different properties of the QCD effective charge in the infrared
domain, see, e.g., Refs. [12, 14, 42, 43] for the details.
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It is worth noting here that the way of incorporating
the analyticity requirement into the RG method given in
Eq. (11) is consistent with the general definition of the
QCD invariant charge, see Refs. [14, 41].

At the one-loop level the RG equation (11) for the
analytic invariant charge can be solved explicitly [11]:

α(1)
an (q2) =

4π

β0

z − 1

z ln z
, z =

q2

Λ2
. (13)

At the higher loop levels only the integral representation
for the analytic running coupling has been derived. So,
at the ℓ-loop level the solution to Eq. (11) acquires the
form [12, 41]:

α(ℓ)
an (q2) =

4π

β0

z − 1

z ln z
exp

[∫ ∞

0

P(ℓ)(σ) ln
(
1 +

σ

z

) dσ
σ

]
,

(14)
where P(ℓ)(σ) = R(ℓ)(σ) −R(1)(σ) and

R(ℓ)(σ) =
1

2πi
lim

ε→0+

ℓ−1∑

j=0

βj

(4π)j+1

{[
α(ℓ)

s (−σ − iε)
]j+1

−
[
α(ℓ)

s (−σ + iε)
]j+1}

. (15)

The obtained massless running coupling (14) has the
correct analytic properties in the q2 variable demanded
in Eq. (9), namely, it has the only cut q2 ≤ 0 along
the negative semiaxis of real q2. In particular, the latter
follows from the Källén–Lehmann integral representation
that holds for the invariant charge (14):

α(ℓ)
an (q2) =

4π

β0

∫ ∞

0

ρ(ℓ)(σ)

σ + z
dσ. (16)

In this equation ρ(ℓ)(σ) denotes the ℓ-loop spectral den-
sity

ρ(ℓ)(σ) = ρ(1)(σ) exp

[∫ ∞

0

P(ℓ)(ζ) ln

∣∣∣∣1 − ζ

σ

∣∣∣∣
dζ

ζ

]

×
[
cosψ(ℓ)(σ) +

lnσ

π
sinψ(ℓ)(σ)

]
, (17)

where

ψ(ℓ)(σ) = π

∫ ∞

σ

P(ℓ)(ζ)
dζ

ζ
, (18)

and

ρ(1)(σ) =

(
1 +

1

σ

)
1

ln2σ + π2
(19)

is the one-loop spectral density. In the exponent of
Eq. (17) the principal value of the integral is assumed
(see Refs. [12, 14] for the details).

The massless analytic running coupling of Eq. (14) pos-
sesses a number of appealing features. First of all, it has

FIG. 1: The integration contour in Eq. (7) for the massless
case. The physical cut of the strong running coupling α(−ζ)
(see Eq. (9)) is shown along the positive semiaxis of real ζ.

no unphysical singularities at any loop level, and con-
tains no adjustable parameters6. Thus, similarly to the
perturbative approach, the QCD scale parameter Λ re-
mains the basic characterizing quantity of the theory. In
addition, the invariant charge (14) incorporates the ul-
traviolet asymptotic freedom with the infrared enhance-
ment in a single expression, which plays an essential role
in applications of the developed model to the descrip-
tion of the quenched lattice simulation data [13, 27, 44].
Moreover, this analytic running coupling has universal
asymptotics both in the ultraviolet and infrared regions
at any loop level, and displays a good higher loop and
scheme stability. The detailed analysis of the properties
of the invariant charge (14) and its applications can be
found in Refs. [14, 27, 41, 45].

As has been discussed in Section II, for the consistent
description of a number of strong interaction processes
one has to employ the continuation of the QCD effective
charge to the timelike region, in the way given in Eq. (7).
For the massless case under consideration it is convenient
to choose the integration contour in Eq. (7) in the form
presented in Figure 1. Eventually, this leads to the fol-
lowing extension of the invariant charge of Eq. (14) to
the timelike domain [12]

α̂(ℓ)
an (s) =

4π

β0

∫ ∞

w

ρ(ℓ)(σ)
dσ

σ
, w =

s

Λ2
, (20)

6 It is worth noting here that the Shirkov–Solovtsov running cou-
pling [25] has no adjustable parameters, either. So, both these
models are the “minimal” ones in this sense.
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FIG. 2: The one-loop massless analytic running coupling
in the spacelike (Eq. (16), q2 > 0) and timelike (Eq. (20),
s = −q2 > 0) regions. The values of parameters are:
Λ = 508 MeV, nf = 2 active quarks.

where s = −q2 > 0, and the spectral density ρ(ℓ)(σ) is
defined in Eq. (17). The obtained result supports the hy-
pothesis due to Schwinger [46, 47] concerning the propor-
tionality between the β function and the relevant spectral
density (see also Ref. [28]).

The one-loop effective charge of Eq. (20) has the fol-
lowing asymptotic in the high energy limit s→ ∞:

α̂(1)
an (s) ≃ 4π

β0

1

lnw

[
1 − π2

3

1

ln2w
+ O

(
1

ln4w
,

1

w

)]
.

(21)
On the one hand, this running coupling has the correct
ultraviolet behavior, determined by the asymptotic free-
dom. On the other hand, the so-called π2–terms have
also appeared in the expansion (21). As it was noticed in
Section II, these terms play a key role in the description
of the strong interaction processes in the timelike domain.
It is interesting to note that, similarly to the “spacelike”
running coupling in the massless case of Eq. (13), the
one-loop effective charge (20) also has an enhancement
in the infrared domain (see Refs. [12, 14]):

α̂(1)
an (s) ≃ 4π

β0

1

w ln2w
, s→ 0. (22)

However, the type of this singularity differs from that
of the invariant charge in Eq. (13) by the logarithmic
factor. Nevertheless, it is precisely this feature of the
timelike running coupling that enables one to handle
the integrals of a specific form over the infrared region,
and in particular, to process the experimental data on
the inclusive semileptonic branching ratio for the case
of the massless pion. In turn, the latter provides one
with the relevant estimation of the QCD scale parameter
Λ = (508 ± 61) MeV, see Section V for the details.

The plots of the functions α
(1)
an (q2) and α̂

(1)
an (s) are

shown in Figure 2. In the ultraviolet limit these expres-

sions have identical behavior determined by the asymp-
totic freedom. However, there is an asymmetry between
them in the intermediate and low energy regions. Thus,
the relative difference between these effective charges is
about several percent at the scale of the Z boson mass,
and increases when approaching the infrared domain.
Evidently, this circumstance has to be taken into ac-
count when one handles the experimental data (see also
review [14] and references therein for the details).

It is worthwhile to emphasize that the mass effects have
not been included in the formulation of the models for the
strong running coupling in the framework of the analytic
approach to QCD, so far. Thus, the obtained results
can be applied, for example, to the study of the exper-
imental data at high energies, where the masses of the
lightest hadrons can be neglected, the pure gluodynam-
ics, and the quenched lattice simulation data (see also
Refs. [13, 14]). However, for the detailed description of
the infrared hadron dynamics, the mass effects have to
be incorporated into the analytic approach to QCD. The
next section is devoted to this task.

IV. MASSIVE ANALYTIC EFFECTIVE

CHARGE

As has been noticed in previous sections, the π meson
plays a crucial part in the description of the strong inter-
action processes at low energies. So far the main thrust
of the analytic approach to QCD has focused on elimi-
nating intrinsic difficulties of perturbation theory, such
as the unphysical singularities of the strong running cou-
pling (see Section III). On the other hand, mass effects
within this formalism remain largely unexplored, thus
far. Therefore, the objective of this section is to incor-
porate the effects due to the pion mass into the analytic
approach to QCD.

Evidently, the original dispersion relation for the Adler
D function [32] (see Eq. (2)) with the nonvanishing mass
of the π meson is the proper object to study here. Indeed,
Eq. (2) implies definite analytic properties in the q2 vari-
able for D(q2). Namely, the latter has to be an analytic
function in the complex q2-plane with the only cut begin-
ning at the two–pion threshold −∞ < q2 ≤ −4m2

π along
the negative semiaxis of real q2. However, its approxima-
tion in Eq. (6) violates this condition due to the spurious
singularities of the perturbative running coupling αs(q

2).
Nevertheless, this disagreement can be avoided by im-
posing the analyticity requirement of the form7

d(q2,m2
π) =

∫ ∞

4m2
π

κ(σ)

σ + q2
dσ (23)

on the right hand-side of Eq. (6). Therefore, the QCD

7 The spectral function κ(σ) in Eq. (23) is supposed to capture
the known perturbative contributions to d(q2, m2

π
).
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effective charge itself has to satisfy the integral represen-
tation

α(q2,m2
π) =

∫ ∞

4m2
π

̺(σ)

σ + q2
dσ (24)

in this case as well. Otherwise, one would encounter
a contradiction between the dispersion relation for the
Adler D function of Eq. (2) and its approximation given
in Eq. (6). Besides, the condition (24) enforces the valid-
ity of relations (7) and (8) for the case of the nonvanishing
pion mass.

In general, there are several models for the invariant
charge within the analytic approach to QCD (see Sec-
tion III for the details). This is so by virtue of the fact
that the behavior of the strong running coupling αs(q

2)
at the ultraviolet asymptotic, which is known from per-
turbation theory, together with the analyticity require-
ment of the form of Eq. (9) or Eq. (24), is not enough
to uniquely determine the relevant spectral density ̺(σ).
The model for the analytic invariant charge [11, 12] has
proved to be successful in the description of the strong
interaction processes of both perturbative and intrinsi-
cally nonperturbative nature [14, 27]. We shall therefore
adopt the spectral density of Eq. (17) in what follows.

Thus, one arrives at the following integral representa-
tion for the massive analytic invariant charge (see also
Refs. [48, 49])

α(ℓ)
an (q2,m2

π) =
4π

β0

∫ ∞

χ

ρ(ℓ)(σ)

σ + z
dσ, z =

q2

Λ2
, (25)

where ρ(ℓ)(σ) denotes the ℓ-loop spectral density of
Eq. (17) and χ = 4m2

π/Λ
2. It is worth noting from

the very beginning that the nonvanishing mass of the
π meson drastically affects the low energy behavior of
this strong running coupling. Indeed, instead of the in-
frared enhancement in the massless case of Eq. (14), one
has here the infrared finite limiting value for the massive
invariant charge in Eq. (25),

α
(ℓ)
0 =

4π

β0

∫ ∞

χ

ρ(ℓ)(σ)
dσ

σ
, (26)

which depends on the value of the pion mass. At the
ultraviolet asymptotic, where the nonperturbative con-
tributions are negligible, the result of Eq. (25) tends to

the perturbative running coupling α
(ℓ)
s (q2):

α(ℓ)
an (q2,m2

π) ≃ α(ℓ)
s (q2) + O

[
Λ2

q2
,
Λ2

q2
1

ln(q2/Λ2)
,
4m2

π

q2

]
.

(27)
In this equation the limits q2 ≫ Λ2 and q2 ≫ 4m2

π are
assumed. In particular, the one-loop effective charge of

FIG. 3: The integration contour in Eq. (7) for the case of
the massive pion. The physical cut of the effective charge
α(−ζ, m2

π) (see Eq. (24)) is shown along the positive semiaxis
of real ζ.

Eq. (25) reads for q2 ≫ 4m2
π

α(1)
an (q2,m2

π) ≃ α(1)
s (q2) − 4π

β0

1

z ln z

− 4

β0

1

z

[
π

2
+ (χ+ 1) arctan

(
lnχ

π

)]

+
4

β0

1

z

∫ ln χ

−∞

ey arctan
( y
π

)
dy. (28)

It is worthwhile to mention also that in the limit of mass-
less pion mπ = 0 the effective charge (25) coincides with
the running coupling of Eq. (14).

In order to handle the strong interaction processes in-
volving the timelike kinematic variable one first has to re-
late the experimental data with the perturbative results
(see Section II). For practical purposes it is convenient
to employ here the extension of the spacelike running
coupling to the timelike domain given by Eq. (7). The
analytic properties in the q2 variable of the QCD invari-
ant charge α(q2) are different for the massless (9) and
massive (24) cases (see Figures 1 and 3, respectively).
Thus, the continuation (7) of the massive strong run-
ning coupling (25) to the timelike region results in (see
Refs. [48, 49] also)

α̂(ℓ)
an (s,m2

π) =
4π

β0

∫ ∞

w

θ(σ − χ) ρ(ℓ)(σ)
dσ

σ
, w =

s

Λ2
,

(29)
where s = −q2 ≥ 0, θ(x) stands for the Heaviside step-
function (see, e.g., Ref. [50]), ρ(ℓ)(σ) is the ℓ-loop spectral
density defined in Eq. (17), and χ = 4m2

π/Λ
2.

Let us address now the basic features of the running
coupling in Eq. (29). First of all, it is very interesting
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FIG. 4: The one–loop massive analytic effective charge in the
spacelike and timelike domains (Eqs. (25) and (29), respec-
tively). The values of parameters are: Λ = 623 MeV, nf = 2
active quarks.

to note here that the effective charges of Eq. (25) and
Eq. (29) have a common finite value in the infrared limit
|q2| → 0, given by Eq. (26). Second, the timelike mas-
sive effective coupling of Eq. (29) has the “plateau–like”
behavior in the deep infrared domain:

α̂(ℓ)
an (s,m2

π) = α
(ℓ)
0 , 0 ≤

√
s ≤ 2mπ. (30)

Besides, for
√
s > 2mπ there is no difference between

the massless and massive timelike running couplings of
Eq. (20) and Eq. (29), respectively, since the mass of the
π meson affects the timelike effective charge (29) only in
the region

√
s ≤ 2mπ, where it does not run (see Fig-

ure 4). Therefore, in the ultraviolet asymptotic s → ∞,
the expansion (21), which accounts for the π2-terms, also
holds for the running coupling of Eq. (29). The hypoth-
esis due to Schwinger [46, 47] concerning the proportion-
ality between the β function and the relevant spectral
density holds for the massive timelike effective charge of
Eq. (29) as well. Apparently, in the limit of vanishing
pion mass mπ → 0 the results of this section reproduce
the massless case described in Section III.

It is worth noting here that some other models for
the QCD effective charge also display a plateau similar
to (30) in the infrared domain. In particular, the afore-
mentioned optimized perturbation theory method [16]
predicts the stagnation of the timelike effective coupling
in the region

√
s . 300 MeV, in striking coincidence with

the result obtained in Eq. (30). Moreover, the so-called
“H–model”, with a similar freezing of the effective charge
to a constant value in the infrared domain, has proved to
be useful in studying of the dynamical chiral symmetry
breaking (see, e.g., Ref. [51]).

V. INCLUSIVE τ LEPTON DECAY

In order to draw a quantitative conclusion on the low
energy behavior of a model for the strong running cou-
pling, one needs the relevant estimation of the QCD scale
parameter Λ. The latter can be extracted, for exam-
ple, from the experimental data on the strong interaction
processes. Among them, the measurement of the τ de-
cay width is most suitable for our purposes, since these
data are fairly precise, and this process probes the in-
frared hadron dynamics at energies below the τ lepton
mass 0 ≤ √

s ≤ Mτ . Let us turn now to the study of
this hadron process, restricting ourselves to the one–loop
level at this stage.

The experimentally measurable quantity here is the
inclusive semileptonic branching ratio

Rτ =
Γ(τ− → hadrons− ντ )

Γ(τ− → e− ν̄e ντ )
. (31)

One can split this ratio into three parts, namely Rτ =
Rτ,V +Rτ,A +Rτ,S. The terms Rτ,V and Rτ,A account for
the contributions to Eq. (31) of the decay modes with the
light quarks only, and they correspond to the vector (V)
and axial–vector (A) quark currents, respectively. The
accuracy of the experimental measurement of these terms
is several times higher than that of the strange width
ratioRτ,S, which accounts for the contribution to Eq. (31)
of the decay modes with the s quark. Thus, let us proceed
with the nonstrange part of the ratio Rτ (31) associated
with the vector quark currents

Rτ,V =
Nc

2
|Vud|2 SEW

(
1 + δ′

EW
+ δ

QCD

)
, (32)

see Refs. [39, 52, 53] for detailed discussion of this is-
sue. In Eq. (32) Nc = 3 is the number of colors,
|Vud| = 0.9738±0.0005 denotes the Cabibbo–Kobayashi–
Maskawa matrix element [54], SEW = 1.0194±0.0050 and
δ′
EW

= 0.0010 are the electroweak corrections [53, 55], and
δ
QCD

stands for the strong correction. The recent mea-
surements of the ratio (32) gave Rτ,V = 1.775 ± 0.017
(ALEPH Collaboration, Ref. [56]) and Rτ,V = 1.764 ±
0.016 (OPAL Collaboration, Ref. [57]). Assuming that
these data have equal statistical weights, one arrives at
the averaged value

Rτ,V = 1.769± 0.017. (33)

In the framework of the approach in hand the strong
correction in Eq. (32) at the one-loop level takes the form

δ
(1)
QCD =

2

π

∫ M2
τ

0

(
1 − s

M2
τ

)2 (
1 + 2

s

M2
τ

)
α̂(1)(s)

ds

M2
τ

,

(34)
see, e.g, papers [12, 14, 39] and references therein. In
Eq. (34) α̂(1)(s) is the one-loop strong running coupling
in the timelike region, and Mτ = (1776.99+0.29

−0.26) MeV
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denotes the mass of the τ lepton [54]. As was shown in
previous sections, the mass of the π meson entering the
dispersion relation for the Adler D function (2) affects
the low energy behavior of the QCD effective charge α̂(s).
Consequently, handling the experimental data on the in-
clusive τ lepton decay is different for the cases of massless
and massive pion. In order to demonstrate how the es-
timation of the QCD scale parameter Λ is affected by
the nonvanishing mass of the π meson, let us study both
instances.

For the limit of massless pion mπ = 0, the one-loop
strong correction δ

QCD
to the Rτ,V ratio (32) is given by

Eq. (34), with α̂(1)(s) being the one-loop massless effec-
tive charge of Eq. (20). Although the latter possesses
the enhancement at s → 0 (see Eq. (22)), the resulting
singularity is integrable. Then, it is useful to represent
the QCD correction in a more convenient form

δ
(1)
QCD(M2

τ ) =
4

β0

∫ 1

0

(
ξ3 − 2ξ2 + 2

)
ρ(1)(ξµ) dξ

+
1

π
α̂(1)

an (M2
τ ), (35)

where α̂
(1)
an (s) is the running coupling (20), ρ(1)(σ) de-

notes the one-loop spectral density (19), and the nota-
tions ξ = s/M2

τ and µ = M2
τ /Λ

2 are used. For the
experimental data given in Eq. (33) one gets the value
Λ = (508± 61) MeV for the QCD scale parameter. This
estimation corresponds to nf = 2 active quarks, and its
uncertainty is due to the errors in the values of Rτ,V,
|Vud|, SEW, and Mτ . The relevant behavior of the mass-
less analytic invariant charge in the spacelike and time-
like regions (Eqs. (16) and (20), respectively) is shown in
Figure 2.

Let us proceed now to the case of the nonvanishing
pion mass. Here, the one-loop QCD correction to the
Rτ,V ratio reads as

δ
(1)
QCD(M2

τ ,m
2
π) =

2

π

∫ M2
τ

0

(
1 − s

M2
τ

)2

×
(
1 + 2

s

M2
τ

)
α̂(1)

an (s,m2
π)

ds

M2
τ

,(36)

where α̂
(1)
an (s,m2

π) is the one-loop massive analytic charge
of Eq. (29) and mπ = (134.9766 ± 0.0006) MeV stands
for the π0 meson mass [54]. In general, in the framework
of the analytic approach there is no need to involve the
contour integration in Eq. (34), since the effective charge
α̂(s), appearing in the integrand, contains no unphysical
singularities in the region s ≥ 0. In other words, the inte-
gration in Eq. (34) can be performed in a straightforward
way. Thus, one can cast the strong correction (36) into
a convenient form

δ
(1)
QCD(M2

τ ,m
2
π) =

4

β0

∫ 1

ξ0

(
ξ3 − 2ξ2 + 2

)
ρ(1)(ξµ) dξ

+
1

π
α̂(1)

an (M2
τ ,m

2
π), (37)

where ξ0 = 4m2
π/M

2
τ and the other notations have been

explained above. For the experimental data (33) the es-
timation8 Λ = (623 ± 81) MeV has been obtained for
nf = 2 active quarks. The uncertainty here is because of
the errors of Rτ,V, |Vud|, SEW, Mτ , and mπ. The corre-
sponding infrared limiting value of the massive effective

charge (26) is α
(1)
0 = 1.475 ± 0.170. The low energy be-

havior of the analytic running coupling in the spacelike
and timelike domains (Eqs. (25) and (29), respectively)
is presented in Figure 4.

Thus, in the framework of the approach in hand it
proves to be important to take into account the mass
of the π meson in processing the low energy QCD data.
Specifically, the relative difference between the obtained
estimations of the scale parameter Λ for the massive and
massless cases is about 20 %. This is so by virtue of the
fact that the contribution to the strong correction (34)
of the effects due to the pion mass

∆δ
(1)
QCD(M2

τ ,m
2
π) =

4

β0

∫ ξ0

0

(
ξ3 − 2ξ2 + 2

)
ρ(1)(ξµ) dξ

(38)
turns out to be significant. At the same time, since the
scales involved in the integral (38) are very low, for some
models for the analytic running coupling the difference
between the limits of massive and massless π meson may
not be so sizable. For example, in the case of the Shirkov–
Solovtsov model [25], where the relevant spectral den-

sity reads as ρ
(1)
ss (σ) = 1/(ln2σ + π2), the relative dif-

ference between the values of the QCD scale parameter,
extracted from the experimental data on the inclusive
τ lepton decay (33), is about 1 %, but the obtained esti-
mations appear to be rather large. Namely, at the one-
loop level with nf = 2 active quarks one gets the values
Λ = (965+280

−212) MeV for the case of the massless π meson,

and Λ = (976+281
−213) MeV for the nonvanishing pion mass.

VI. APPLICABILITY TO THE CHIRAL

SYMMETRY BREAKING

Based on the study of gauge invariant Schwinger–
Dyson equations, Cornwall proposed a long time ago that
the self-interactions of gluons give rise to a dynamical
gluon mass, while preserving at the same time the local
gauge symmetry of the theory [29]. This gluon “mass” is
not a directly measurable quantity, but has to be related
with other physical quantities, such as the glueball spec-
trum, the energy needed to pop two gluons out of the
vacuum, the QCD string tension, or the QCD vacuum
energy (see paper [58] and references therein).

8 It is worthwhile to note here that the one-loop perturbative anal-
ysis of the strong correction in Eq. (32) (see, e.g., Ref. [53]) gives
the value of the QCD scale parameter Λ = (690 ± 57) MeV for
two active quarks.
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FIG. 5: Graphical representation of the gap equation (42).

One of the main phenomenological implications of this
analysis is that the presence of the gluon mass mg satu-
rates9 the running of the strong coupling at low energies.
Namely, instead of increasing indefinitely in the infrared,
as perturbation theory predicts, it “freezes” at a finite
value, determined by the gluon mass. In particular, the
nonperturbative effective coupling obtained in Ref. [29]
is given by

αC(q2) =
4π

β0

1

ln
[
z + 4M2

g (q2)/Λ2
] , z =

q2

Λ2
, (39)

where Mg(q
2) denotes the dynamical gluon mass

M2
g (q2) = m2

g

[
ln

(
z + 4m2

g/Λ
2
)

ln
(
4m2

g/Λ
2
)

]− 12
11

. (40)

Here the nontrivial dependence of the dynamically gen-
erated gluon mass (40) on the momentum q2 is crucial
for the renormalizability of the theory. The running cou-
pling (39) has the infrared finite limiting value αC(0) =

4π
[
β0 ln(4m2

g/Λ
2)

]−1
. It is worth noting that the above

equation makes sense only for the gluon mass satisfying
mg > Λ/2. For a typical values of mg = 500 MeV and
Λ = 300 MeV, one obtains for the case of the pure gluo-
dynamics (nf = 0) an estimation αC(0) ≃ 0.5. An inde-
pendent analysis presented in Ref. [60] yields a maximum
allowed value for αC(0) of about 0.6. The incorporation
of fermions into the effective charge [61] does not change
the picture qualitatively (at least for the quark masses of
the order of Λ), resulting in an approximate expression

αcp(q2) =
4π

11 ln(z + χg) − 2nf ln(z + χq)/3
. (41)

In this equation χg = 4m2
g/Λ

2, χq = 4m2
q/Λ

2, a light
quark constituent mass is mq = 350 MeV [54], and
mg = (500 ± 100) MeV stands for the gluon mass. The
effective coupling of Eq. (39) was the focal point of ex-
tensive scrutiny, and has been demonstrated to furnish
an unified description of a wide variety of the low energy
QCD data [62].

In general, an important unresolved question in this
context is the incorporation of the QCD effective charge

9 Another discussion of the impact of the gluon mass on the in-
frared behavior of the strong running coupling can be found, e.g.,
in Ref. [59].

�(0)
�(0)

�
r
FIG. 6: A typical dependence of Σ(0) on the infrared limiting
value of the QCD effective charge α(0), S−1(p) = A(p)p/ +
Σ(p).

into the standard Schwinger–Dyson equation governing
the dynamics of the quark propagator S(p)

S−1(p) = S−1
0 (p) − g2

∫
d4k

(2π)4
γµ S Γν ∆µν , (42)

see Figure 5 also. In particular, since QCD is not a
fixed point theory, the usual QED–inspired gap equation
must be modified, in order to incorporate the running
charge and asymptotic freedom. The usual way of ac-
complishing this eventually reduces to the replacement
1/k2 → α(k2)/k2 in the corresponding kernel of the gap
equation, where α(k2) is the QCD running coupling. The
inclusion of α(k2) is essential for arriving at an integral
equation for S(p) which is well-behaved in the ultravi-
olet. Indeed, the additional logarithm in the denomi-
nator of the kernel due to the running coupling α(k2)
improves the convergence of the integral. However, since
the perturbative form of α(k2) diverges at low energies as
1/ ln(k2/Λ2) when k2 → Λ2, some form of the infrared
regularization for the invariant charge α(k2) is needed,
whose details depend on the specific assumptions one is
making regarding the nonperturbative hadron dynamics.
At this point the issue of the critical coupling makes its
appearance. Specifically, as is well-known, there is a crit-
ical infrared limiting value of the running coupling, to be
denoted by αcr, below which there are no nontrivial so-
lutions to the resulting gap equation, i.e., there is no
chiral symmetry breaking, see Figure 6. Thus, the in-
variant charge α(k2) employed within the gap equation
must be such that (i) it gives rise to a nonsingular an-
swer, (ii) it reaches large enough values at k2 → 0 in
order to overcome αcr, and (iii) it does not contradict
existing low-energy experimental results.

The incorporation of the effective charge of Eq. (39)
into a gap equation has been studied for the first time
in Ref. [63]. There it was concluded that chiral symme-
try breaking solutions for Σ(p) could be obtained only
for unnaturally small values of the gluon mass, namely
mg/Λ ≃ 0.8. This is so because the typical value of αcr
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FIG. 7: Comparison of the massive analytic running cou-
pling (25) (solid curves) with the effective charge (41) (dashed
curves). The values of parameters are: nf = 2 active quarks,
Λ = 704 MeV (a), Λ = 542 MeV (b), gluon mass mg =
400 MeV and Λ = 350 MeV (c), gluon mass mg = 600 MeV
and Λ = 150 MeV (d).

found in the standard treatment of the gap equation10 is
αcr ≃ 1.2 (see, e.g., Ref. [64]), which is what the expres-
sion for αC(0) yields for the above ratio of mg/Λ. This
issue was further investigated in Ref. [61], where a system
of coupled gap and vertex equations was considered. The
upshot of this study was that no consistent solutions to
the system of integral equations could be found, due to
the fact that the allowed values for α(0), dictated by the
vertex equation, were significantly lower than αcr, i.e.,
not large enough to trigger chiral symmetry breaking. A
similar analysis was presented in Ref. [65], together with
several other models for the nonperturbative QCD run-
ning coupling [66].

In what follows we will suggest a possible resolution
of this problem, inspired by the infrared behavior of the
massive analytic invariant charge of Eq. (25). The basic
observation is captured in Figure 7. Namely, the effec-
tive charge with a gluon mass (dashed curves) and the
analytic charge (solid curves) coincide for a large range
of momenta, and they only begin to differ appreciably in
the deep infrared domain k2 . Λ2. In this region the
analytic charge (25) rises abruptly, almost doubling its
size between k2 = Λ2 and k2 = 0, whereas the running
coupling (41) in the same momentum interval remains
essentially fixed to a value11 of about 0.6. A possible

10 The exact value of αcr depends on the number of active flavors
as well as on the various approximations employed in deriving
the gap equations, such as the choice of gauge, or the inclusion of
gauge-technique inspired Ansätze for the quark-gluon vertex, but
these issues do not alter significantly our qualitative discussion.

11 The precise numerical values of mg/Λ and mπ/Λ do not change

picture that emerges from this observation is the follow-
ing. It may be that the concept of the dynamically gener-
ated gluon mass fails to capture all the relevant dynam-
ics in the very deep infrared, where confinement or other
nonperturbative effects make their appearance. At that
point it could be preferable to switch to a description
in terms of the analytic charge (25), which (i) coincides
with that of Cornwall in the region where the latter fur-
nishes a successful description of data, and (ii) since it
overcomes the critical value αcr, offers the possibility of
accounting for chiral symmetry breaking at the level of
gap equations.

VII. CONCLUSIONS

In this paper the effects due to the mass of the π me-
son are incorporated into the analytic approach to QCD.
The nonvanishing pion mass gives rise to an infrared fi-
nite limiting value for the QCD effective charge. Besides,
the latter acquires the plateau-like behavior in the deep
infrared domain of the timelike region 0 ≤ √

s ≤ 2mπ. It
is of a particular interest to note that such stagnation is
also predicted by a number of phenomenological models
for the strong running coupling. The developed analytic
effective charge is applied to processing the experimen-
tal data on the inclusive τ lepton decay. The effects due
to the pion mass play a substantial role here, affecting
the estimation of the QCD scale parameter Λ. A quan-
titative conclusion on the applicability of the obtained
massive running coupling to the study of chiral symme-
try breaking is drawn.

It would be interesting to further scrutinize the devel-
oped approach. First of all, it is of particular relevance to
include the higher order perturbative corrections in the
study of the experimental data on the inclusive τ lepton
decay. Moreover, it might also be important to incor-
porate the nonperturbative terms, arising from the op-
erator product expansion (see also Ref. [67]) and from
the so-called nonlocal chiral quark model [68], into the
Adler D function. In addition, a detailed study of the
gap equation, with the analytic charged plugged into it,
is needed in order to verify if indeed one encounters non-
trivial solutions, whose size is phenomenologically rele-
vant. Specifically, one should check by making use of,
e.g., the Pagels–Stokar method [69], whether the solu-
tions obtained for Σ(p) can reproduce a reasonable value
of the pion-decay constant fπ. It is also interesting to ap-
ply the developed model to the study of the pion electro-
magnetic form factor Fπ(q) (see paper [70] and references
therein). At the same time, a crucial point to explore is
whether the massive analytic effective charge satisfies a
variety of phenomenological constraints, imposed by the

qualitatively this picture, as long as the two scales are well sep-
arated.
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low energy experimental data on the infrared behavior of
the QCD running coupling, see, e.g., papers [62, 71] and
references therein.

Acknowledgments

The authors thank Professors D.V. Shirkov, A.C.
Aguilar, A.E. Dorokhov, I.L. Solovtsov, and N.G. Ste-

fanis for the stimulating discussions and useful com-
ments. This work was supported by grants SB2003-0065
of the Spanish Ministry of Education, CICYT FPA20002-
00612, RFBR (Nos. 02-01-00601 and 04-02-81025), and
NS-2339.2003.2.

[1] D.J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343
(1973); H.D. Politzer, ibid. 30, 1346 (1973); G. ’t Hooft,
report at the Conference on Yang–Mills Fields (Marseille,
France, 1972).

[2] E.C.G. Stuckelberg and A. Petermann, Helv. Phys. Acta
24, 317 (1951); 26, 499 (1953); M. Gell–Mann and
F.E. Low, Phys. Rev. 95, 1300 (1954); N.N. Bogoliubov
and D.V. Shirkov, Dokl. Akad. Nauk SSSR 103, 203
(1955); 103, 391 (1955); Nuovo Cimento 3, 845 (1956).

[3] N.N. Bogoliubov and D.V. Shirkov, Introduction to the
Theory of Quantized Fields (Interscience, New York,
1980).

[4] W. Fischler, Nucl. Phys. B 129, 157 (1977); T. Ap-
pelquist, M. Dine, and I.J. Muzinich, Phys. Lett. B 69,
231 (1977); Phys. Rev. D 17, 2074 (1978); M. Peter,
Phys. Rev. Lett. 78, 602 (1997); Nucl. Phys. B 501, 471
(1997).

[5] G.S. Bali et al. (SESAM and TχL Collaborations), Phys.
Rev. D 62, 054503 (2000); G.S. Bali, Phys. Rep. 343,
1 (2001); C. Bernard et al., Phys. Rev. D 62, 034503
(2000); S. Necco and R. Sommer, Nucl. Phys. B 622, 328
(2002); T.T. Takahashi, H. Suganuma, Y. Nemoto, and
H. Matsufuru, Phys. Rev. D 65, 114509 (2002); S. Aoki
et al. (JLQCD Collaboration), ibid. 68, 054502 (2003).

[6] B.M. Barbashov and V.V. Nesterenko, Introduction to
the Relativistic String Theory (World Scientific, Singa-
pore, 1990).

[7] W. Celmaster and F.S. Henyey, Phys. Rev. D 18, 1688
(1978); D.B. Lichtenberg and J.G. Wills, Nuovo Cimento
A 47, 483 (1978); R. Levine and Y. Tomozawa, Phys.
Rev. D 19, 1572 (1979); J.L. Richardson, Phys. Lett. B
82, 272 (1979); W. Buchmuller, G. Grunberg, and S.-
H.H. Tye, Phys. Rev. Lett. 45, 103 (1980).

[8] W. Lucha, F.F. Schoberl, and D. Gromes, Phys.
Rept. 200, 127 (1991); N. Brambilla and A. Vairo,
arXiv:hep-ph/9904330; V.V. Kiselev, A.E. Kovalsky, and
A.I. Onishchenko, Phys. Rev. D 64, 054009 (2001).

[9] A. Ringwald and F. Schrempp, Phys. Lett. B 459, 249
(1999).

[10] D.A. Smith and M.J. Teper (UKQCD Collaboration),
Phys. Rev. D 58, 014505 (1998).

[11] A.V. Nesterenko, Phys. Rev. D 62, 094028 (2000).
[12] A.V. Nesterenko, Phys. Rev. D 64, 116009 (2001).
[13] F. Schrempp, J. Phys. G 28, 915 (2002).
[14] A.V. Nesterenko, Int. J. Mod. Phys. A 18, 5475 (2003).
[15] P.M. Stevenson, Phys. Rev. D 23, 2916 (1981).
[16] A.C. Mattingly and P.M. Stevenson, Phys. Rev. D 49,

437 (1994).
[17] G. Grunberg, Phys. Rev. D 29, 2315 (1984).

[18] S.J. Brodsky, G.P. Lepage, and P.B. Mackenzie, Phys.
Rev. D 28, 228 (1983).

[19] S. Ciulli and J. Fischer, Nucl. Phys. 24, 465 (1961);
J. Fischer, Fortschr. Phys. 42, 665 (1994); I. Caprini and
J. Fischer, Phys. Rev. D 60, 054014 (1999); 62, 054007
(2000); 68, 114010 (2003).

[20] V. Elias, D.G.C. McKeon, and T.G. Steele, Phys. Rev. D
69, 045015 (2004); Int. J. Mod. Phys. A 18, 3417 (2003);
V. Elias, arXiv:hep-ph/0305187.

[21] M.R. Ahmady et al., Nucl. Phys. B 655, 221 (2003);
Phys. Rev. D 66, 014010 (2002); 67, 034017 (2003).

[22] P.J. Redmond, Phys. Rev. 112, 1404 (1958); P.J. Red-
mond and J.L. Uretsky, Phys. Rev. Lett. 1, 147 (1958);
N.N. Bogoliubov, A.A. Logunov, and D.V. Shirkov, Zh.
Eksp. Teor. Fiz. 37, 805 (1959) [Sov. Phys. JETP 37,
574 (1960)].

[23] J.D. Bjorken, report SLAC-PUB-5103 (1989).
[24] Y.L. Dokshitzer, G. Marchesini, and B.R. Webber, Nucl.

Phys. B 469, 93 (1996).
[25] D.V. Shirkov and I.L. Solovtsov, JINR Rapid Comm. 2,

5 (1996); Phys. Rev. Lett. 79, 1209 (1997).
[26] D.V. Shirkov, Teor. Mat. Fiz. 119, 55 (1999) [Theor.

Math. Phys. 119, 438 (1999)]; I.L. Solovtsov and D.V.
Shirkov, Teor. Mat. Fiz. 120, 482 (1999) [Theor. Math.
Phys. 120, 1220 (1999)].

[27] A.V. Nesterenko, Nucl. Phys. B (Proc. Suppl.) 133, 59
(2004).

[28] K.A. Milton and I.L. Solovtsov, Phys. Rev. D 55, 5295
(1997); 59, 107701 (1999).

[29] J.M. Cornwall, Phys. Rev. D 26, 1453 (1982).
[30] A. Peterman, Phys. Rep. 53, 157 (1979); A.J. Buras,

Rev. Mod. Phys. 52, 199 (1980).
[31] M.R. Pennington and G.G. Ross, Phys. Lett. B 102, 167

(1981).
[32] S.L. Adler, Phys. Rev. D 10, 3714 (1974).
[33] A.V. Radyushkin, Joint Institute for Nuclear Research

report No. 2–82–159 (1982); JINR Rapid Comm. 4, 9
(1996); arXiv:hep-ph/9907228.

[34] N.V. Krasnikov and A.A. Pivovarov, Phys. Lett. B 116,
168 (1982).

[35] T. Appelquist and H. Georgi, Phys. Rev. D 8, 4000
(1973); A. Zee, ibid. D 8, 4038 (1973).

[36] S.G. Gorishny, A.L. Kataev, and S.A. Larin, Phys. Lett.
B 259, 144 (1991).

[37] L.R. Surguladze and M.A. Samuel, Phys. Rev. Lett. 66,
560 (1991); textbf66, 2416(E) (1991).

[38] D.V. Shirkov, Eur. Phys. J. C 22, 331 (2001); Teor. Mat.
Fiz. 127, 3 (2001) [Theor. Math. Phys. 127, 409 (2001)].

[39] K.A. Milton, I.L. Solovtsov, and O.P. Solovtsova, Phys.

http://arXiv.org/abs/hep-ph/9904330
http://arXiv.org/abs/hep-ph/0305187
http://arXiv.org/abs/hep-ph/9907228


13

Rev. D 64, 016005 (2001); D 65, 076009 (2002); K.A.
Milton, I.L. Solovtsov, O.P. Solovtsova, and V.I. Yasnov,
Eur. Phys. J. C 14, 495 (2000).

[40] R. Jost and H. Lehmann, Nuovo Cimento 5, 1598 (1957);
F.J. Dyson, Phys. Rev. 110, 1460 (1958); N.N. Bogoli-
ubov, V.S. Vladimirov, and A.N. Tavkhelidze, Theor.
Math. Phys. 12, 305 (1972).

[41] A.V. Nesterenko and I.L. Solovtsov, Mod. Phys. Lett. A
16, 2517 (2001).

[42] D.V. Shirkov, Teor. Mat. Fiz. 132, 484 (2002) [Theor.
Math. Phys. 132, 1309 (2002)].

[43] D.V. Shirkov, in Proceedings of the Eleventh Interna-
tional QCD Conference (5–10 July 2004, Montpellier,
France) (to be published); arXiv:hep-ph/0408272.

[44] A.V. Nesterenko, Int. J. Mod. Phys. A 19, 3471 (2004).
[45] A.V. Nesterenko, Mod. Phys. Lett. A 15, 2401 (2000).
[46] J. Schwinger, Proc. Natl. Acad. Sci. USA 71, 3024

(1974); 71, 5047 (1974).
[47] K.A. Milton, Phys. Rev. D 10, 4247 (1974).
[48] A.V. Nesterenko and J. Papavassiliou, in Proceed-

ings of the Eighth Workshop on Nonperturbative QCD
(7–11 June 2004, Paris, France) (to be published);
arXiv:hep-ph/0409220.

[49] A.V. Nesterenko and J. Papavassiliou, in Proceedings
of the Eleventh International QCD Conference (5–10
July 2004, Montpellier, France) (to be published);
arXiv:hep-ph/0410072.

[50] M. Abramowitz and I.A. Stegun (Eds.), Handbook of
Mathematical Functions (Dover, New York, 1972).

[51] K. Higashijima, Phys. Rev. D 29, 1228 (1984).
[52] E. Braaten, Phys. Rev. Lett. 60, 1606 (1988); Phys. Rev.

D 39, 1458 (1989); F. Le Diberder and A. Pich, Phys.
Lett. B 286, 147 (1992).

[53] E. Braaten, S. Narison, and A. Pich, Nucl. Phys. B 373,
581 (1992).

[54] S. Eidelman et al. (Particle Data Group), Phys. Lett. B
592, 1 (2004).

[55] W.J. Marciano and A. Sirlin, Phys. Rev. Lett. 61, 1815

(1988); 56, 22 (1986); E. Braaten and C.S. Li, Phys. Rev.
D 42, 3888 (1990).

[56] R. Barate et al. (ALEPH Collaboration), Eur. Phys. J.
C 4, 409 (1998).

[57] K. Ackerstaff et al. (OPAL Collaboration), Eur. Phys. J.
C 7, 571 (1999).

[58] A.C. Aguilar, A.A. Natale, and P.S. Rodrigues da Silva,
Phys. Rev. Lett. 90, 152001 (2003).

[59] D.V. Shirkov, Phys. Atom. Nucl. 62, 1928 (1999).
[60] J.M. Cornwall and J. Papavassiliou, Phys. Rev. D 40,

3474 (1989).
[61] J. Papavassiliou and J.M. Cornwall, Phys. Rev. D 44,

1285 (1991).
[62] A.C. Aguilar, A. Mihara, and A.A. Natale, Int. J. Mod.

Phys. A 19, 249 (2004).
[63] B. Haeri and M.B. Haeri, Phys. Rev. D 43, 3732 (1991).
[64] D. Atkinson, P.W. Johnson, and K. Stam, Phys. Rev. D

37, 2996 (1988).
[65] A.C. Aguilar, A. Mihara, and A.A. Natale, Phys. Rev. D

65, 054011 (2002).
[66] A.C. Aguilar, A.A. Natale, and R. Rosenfeld, Phys. Rev.

D 62, 094014 (2000).
[67] D.M. Howe and C.J. Maxwell, Phys. Rev. D 70, 014002

(2004).
[68] A.E. Dorokhov and W. Broniowski, Eur. Phys. J. C

32, 79 (2003); I.V. Anikin, A.E. Dorokhov, and L.
Tomio, Phys. Part. Nucl. 31, 509 (2000) [Fiz. Elem.
Chast. Atom. Yadra 31, 1023 (2000)]; A.E. Dorokhov,
arXiv:hep-ph/0405153.

[69] H. Pagels and S. Stokar, Phys. Rev. D 20, 2947 (1979).
[70] A.P. Bakulev, K. Passek-Kumericki, W. Schroers, and

N.G. Stefanis, Phys. Rev. D 70, 033014 (2004); N.G. Ste-
fanis, arXiv:hep-ph/0410245.

[71] Yu.L. Dokshitzer and B.R. Webber, Phys. Lett. B 352,
451 (1995); Yu.L. Dokshitzer, V.A. Khoze, and S.I.
Troyan, Phys. Rev. D 53, 89 (1996).

http://arXiv.org/abs/hep-ph/0408272
http://arXiv.org/abs/hep-ph/0409220
http://arXiv.org/abs/hep-ph/0410072
http://arXiv.org/abs/hep-ph/0405153
http://arXiv.org/abs/hep-ph/0410245

